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Figure 1. We introduce the regularized dipole sum, a point-based representation for multi-view 3D reconstruction. This representation can model both
implicit geometry and radiance fields using per-point attributes, and supports efficient ray tracing and differentiable rendering, thus facilitating optimization
using multi-view images. We initialize our regularized dipole sum representation using the dense point cloud output of a structure from motion procedure
(COLMAP). Bootstrapping from this initialization, we use inverse rendering to optimize per-point attributes (visualized in insets as varying point radii),
resulting in a higher-quality surface reconstruction. Images are from the “Komainu / Kobe / Ikuta-jinja” dataset by Open Heritage 3D.

We introduce a method for high-quality 3D reconstruction frommulti-view
images. Our method uses a new point-based representation, the regularized
dipole sum, which generalizes the winding number to allow for interpola-
tion of per-point attributes in point clouds with noisy or outlier points. Us-
ing regularized dipole sums, we represent implicit geometry and radiance
fields as per-point attributes of a dense point cloud, which we initialize
from structure from motion. We additionally derive Barnes-Hut fast sum-
mation schemes for accelerated forward and adjoint dipole sum queries.
These queries facilitate the use of ray tracing to efficiently and differentiably
render images with our point-based representations, and thus update their
point attributes to optimize scene geometry and appearance. We evaluate
our method in inverse rendering applications against state-of-the-art alter-
natives, based on ray tracing of neural representations or rasterization of
Gaussian point-based representations. Our method significantly improves
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3D reconstruction quality and robustness at equal runtimes, while also sup-
porting more general rendering methods such as shadow rays for direct
illumination.
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Ray tracing.
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inverse rendering
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1 INTRODUCTION
The emergence of neural rendering methods [Tewari et al. 2022]
has led to the widespread adoption of a two-stage pipeline for 3D
reconstruction from multi-view images: The first stage uses tradi-
tional multi-view geometrymethods such as structure frommotion
[Schönberger and Frahm 2016] to estimate unknown parameters
required for the second stage—namely, camera poses. The second
stage uses gradient-based optimization and differentiable render-
ing to optimize a scene representation so that it reproduces the
multi-view images—an inverse rendering process.The performance
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of this pipeline depends critically on the choice of scene represen-
tation, motivating the development of various choices (e.g., neural
[Mildenhall et al. 2021; Wang et al. 2021b], grid-based [Fridovich-
Keil et al. 2022; Karnewar et al. 2022; Wu et al. 2023], hash-encoded
[Müller et al. 2022; Wang et al. 2023; Li et al. 2023]) that offer dif-
ferent tradeoffs between expressive power and computational effi-
ciency.
This paper introduces a new scene representation for multi-view

3D reconstruction, the regularized dipole sum. This representation
uses tailored kernel-based interpolation of point cloud attributes, to
model both the scene geometry (an implicit surface) and scene light-
field (a radiance field). Our representation continues a recent shift
towards point-based representations for neural rendering [Xu et al.
2022]. In particular, point-based representations using 3D Gauss-
ian kernels have recently gained widespread popularity for both
novel-view synthesis tasks [Kerbl et al. 2023] and 3D reconstruc-
tion [Dai et al. 2024; Huang et al. 2024b]: The use of Gaussian ker-
nels allows these methods to perform differentiable rendering us-
ing image-space rasterization instead of ray tracing, resulting in im-
pressive computational acceleration. At the same time, the use of
rasterization precludes combinations of these representations with
advanced rendering features such as direct illumination methods
(e.g., shadow rays), which rasterization is incompatible with.

By contrast, we design the regularized dipole sum representation
to support efficient differentiable rendering with ray tracing. Our
representation is fundamentally based on the winding number for
point clouds [Barill et al. 2018]—an approximation to the indicator
function of the solid object represented by the point cloud, equal
to the sum of Poisson kernels centered at all point cloud locations.
The winding number has useful geometric regularization proper-
ties [Lin et al. 2022; Lu et al. 2018; Xu et al. 2023; Metzer et al. 2021],
as a jump-harmonic function that approximates the output of ro-
bust surface reconstruction algorithms [Kazhdan et al. 2006]. It is
also amenable to efficient computation using fast summation meth-
ods [Beatson et al. 1997]. Lastly, it can be directly initialized with
an optional output of the first-stage structure frommotion—a dense
3D point cloud of quality approaching that of reconstructions from
state-of-the-art neural rendering methods.
The regularized dipole sum generalizes the winding number in

several ways that preserve its desirable properties, while also turn-
ing it into a point-based representation suitable for inverse render-
ing applications. As we explain in Section 4, we use regularized ker-
nels and general per-point attributes, to make this representation
compatible with point clouds that are noisy or contain outliers—as
point clouds from structure from motion typically do. Then, in Sec-
tion 5, we show how to use regularized dipole sums to represent not
only the geometry, but also the radiance field of a scene. Lastly, in
Section 6, we use fast summation methods to enable efficient com-
putation and backpropagation, as needed for inverse rendering.

With the resulting fast dipole sums, we can use ray tracing to op-
timize a dense point-based representation initialized directly from
structure of motion, by simply updating point-based attributes. Fig-
ure 1 shows an example use of our approach: Structure frommotion
[Schönberger and Frahm 2016] produces a dense point cloud that
we visualize as a continuous surface using (our regularized general-
ization of) thewinding number.We then use inverse renderingwith

fast dipole sums to optimize attributes of this point cloud (visual-
ized in the insets), resulting in an improved reconstructed surface.
In Section 7, we evaluate our approach against state-of-the-art neu-
ral rendering methods for surface reconstruction, using neural [Li
et al. 2023; Wang et al. 2023] and 3D Gaussian [Dai et al. 2024] rep-
resentations. Our experiments show that our approach is both effi-
cient and effective, greatly improving reconstruction quality and
robustness at equal runtimes, while additionally supporting ren-
dering with methods such as shadow rays. We provide interactive
visualizations and an open-source implementation on the project
website.1

2 RELATED WORK
Structure frommotion. 3D reconstruction fromuncalibratedmulti-

view images, also known as structure from motion, is a classical
problem in computer vision [Tomasi andKanade 1990; Ullman 1979].
It has been the subject of extensive theoretical study [Hartley and
Zisserman 2003] and engineering efforts [Snavely et al. 2008, Bundler]—
we refer to Özyeşil et al. [2017] for a detailed review. Traditional
methods attacked this problem primarily by enforcing inter-image
geometric consistency, and triangulating correspondences across
different images. Mature structure from motion methods [Schön-
berger and Frahm 2016] can robustly produce sparse point cloud re-
constructions from thousands of images [Snavely et al. 2006]. Addi-
tionally, such methods provide optional shading-based refinement
capabilities [Schönberger et al. 2016] to turn sparse into dense point
clouds capturing high geometric detail. Lastly, these methods can
cover scenes ranging from individual objects [Schönberger and Frahm
2016] to entire cities [Agarwal et al. 2011]. We focus on the first set-
ting, and aim to produce high-fidelity object-level reconstructions,
by directly utilizing and optimizing dense point clouds from struc-
ture from motion implementations (Figure 1).

Shading-based refinement and neural rendering. Geometric-only
structure-from-motionmethods produce point clouds that can have
holes in textureless areaswhere there are no correspondences.They
also typically cannot reproduce fine surface details, because they do
not exploit shading cues that provide normal information. Shading-
aware refinement methods can refine initial structure from motion
reconstructions using either simple shading models [Dai et al. 2017;
Langguth et al. 2016; Zollhöfer et al. 2015; Wu et al. 2011] or com-
plex differentiable rendering procedures [Luan et al. 2021]. How-
ever, accounting for shading requires also optimizing for ancillary
scene information, such as reflectance and global illumination, re-
sulting in a challenging and ill-posed inverse rendering problem.

Recent neural renderingmethods havemade tremendous progress
towards overcoming these challenges. We refer to Tewari et al.
[2022] for a detailed review, and discuss only the most relevant
works. Mildenhall et al. [2021] tackled multi-view reconstruction
problems through the combined use of differentiable volume ren-
dering (implemented through ray tracing), neural field represen-
tations for both geometry (implicit surfaces) and global illumina-
tion (radiance fields), and structure from motion for pose estima-
tion (COLMAP [Schönberger and Frahm 2016]). Though they ini-
tially focused on novel-view synthesis, subsequent methods have
1https://imaging.cs.cmu.edu/fast_dipole_sums
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adapted this methodological approach for surface reconstruction
tasks [Yariv et al. 2021; Oechsle et al. 2021; Wang et al. 2021b]. Un-
fortunately, the expressive power neural field representations pro-
vide comes with two critical caveats: 1. It introduces a severe com-
putational overhead, resulting in very costly inverse rendering op-
timization. 2. It makes it difficult to leverage the 3D reconstruction
output of structure from motion in ways more direct and effective
than as just regularization during optimization [Deng et al. 2022;
Fu et al. 2022]. We overcome these challenges by developing point-
based field representations that are amenable to efficient ray trac-
ing, and can directly optimize dense point clouds from structure
from motion.

Geometry and radiance field representations. To alleviate the com-
putational complexity issues due to neural field representations, re-
cent work has made rapid progress towards alternative represen-
tations for implicit geometry and radiance fields. Grid-based meth-
ods replace neural fields with either dense [Karnewar et al. 2022]
or adaptive [Fridovich-Keil et al. 2022; Wu et al. 2023] grids that are
efficient to ray trace [Museth et al. 2013] and interpolate, though po-
tentially memory intensive (for dense grids) or difficult to optimize
in an end-to-end manner (for adaptive grids). Hash-based methods
replace neural fields with multi-resolution hash encodings [Müller
et al. 2022; Wang et al. 2023; Li et al. 2023], which combine expres-
sive power and efficiency. All these approaches can optionally be
combined with shallow (thus more efficient) neural networks that
post-process interpolated or encoded features. These approaches
overcome computational efficiency issues associated with neural
fields, though they still do not provide a way to directly use point
clouds available from structure from motion.
Point-based field representations use a point cloud and kernel-

based interpolation to compute field quantities needed to express
implicit geometry and radiance fields. Xu et al. [2022] proposed this
approach for novel-view synthesis, though their use of complex
neural network post-processing of point features still introduces
significant computational overhead. Kerbl et al. [2023] introduced
a point-based representation that uses collections of 3D Gaussians
to represent both geometry (volumetric density) and radiance. Crit-
ically, they also combine this representation with rasterization—
through image-space Gaussian splatting—to eliminate the need for
costly ray tracing during volume rendering, thus achieving real-
time optimization and rendering performance.Though this method
originally focused on novel-view synthesis, subsequentworks [Gué-
don and Lepetit 2023; Dai et al. 2024; Huang et al. 2024b] have
provided extensions for high-fidelity surface reconstruction. Being
point-based, these methods can directly leverage 3D information
from structure from motion. However, in transitioning from ray
tracing to rasterization, they sacrifice generality: for example, ras-
terization rules out rendering methods such as shadow rays [Ling
et al. 2023] (also known as next-event estimation Pharr et al. [2023])
for rendering direct illumination from know light sources. We con-
tribute a point-based representation that uses ray tracing—thusmain-
taining compatibility with such rendering methods—yet is as effi-
cient as Gaussian splatting methods. Compared to these methods,
and to concurrent work [Yu et al. 2024] on ray tracing 3D Gaussian
representations, our method leverages and extends the advantages

afforded by winding number representations [Barill et al. 2018] to
produce 3D reconstructions of even higher quality (Section 7).

Point cloud surface reconstruction. Point-based geometry repre-
sentations have a long history in computer graphics as methods
for reconstructing continuous surfaces (either implicit or, after iso-
surface extraction [Lorensen and Cline 1987], explicit) from point
clouds. These methods often find use as post-processing of point
clouds from structure from motion methods, and thus are robust to
imperfections such as noisy points, outlier points, or holes. Berger
et al. [2014] and Huang et al. [2024a] provide detailed reviews. The
methods by Fuhrmann andGoesele [2014] and Zagorchev andGosh-
tasby [2011] use anisotropic Gaussian functions and their deriva-
tives to interpolate scalar fields from point locations, and thus bear
a strong similarity to the 3D Gaussian splatting representations we
discussed above. Carr et al. [2001] use instead more general radial-
basis functions for interpolation, combined with fast summation
methods [Beatson et al. 1997]. Among this extensive family ofmeth-
ods, we build on the point-based winding number representation
Jacobson et al. [2013]; Barill et al. [2018]; Spainhour et al. [2024],
because of its attractive properties of geometric regularization, ro-
bustness, and efficiency—we provide a review in Section 3. We gen-
eralizewinding numbers in Sections 4–6 into our regularized dipole
sum representation, which we use for both implicit geometry and
radiance fields. Doing so allows us to achieve efficient inverse ren-
dering of point clouds for high-quality surface reconstruction.

3 BACKGROUND
We discuss background on volume rendering with radiance fields
for surface reconstruction, and thewinding number for point clouds.

3.1 Inverse volume rendering with radiance fields
We follow the methodology introduced by NeRF [Mildenhall et al.
2021] and represent a 3D scene as a volume comprising two compo-
nents: 1. an attenuation coefficient 𝜎 : R3×S2 → R≥0 representing
the scene’s geometry; and 2. a radiance field L : R3 × S2 → R3

≥0
representing the scene’s (RGB) lightfield. As Miller et al. [2024] ex-
plain, at every scene point 𝑥 ∈ R3 and direction 𝜔 ∈ S2, the at-
tenuation coefficient 𝜎 (𝑥, 𝜔) is the probability density that a ray
passing through 𝑥 along 𝜔 will terminate instantly due to intersec-
tion with the scene’s geometry. Then, the radiance field L(𝑥, 𝜔) is
the incident (RGB) global illumination at 𝑥 along 𝜔 .

This representation allows expressing the RGB intensity (color)
𝑐 captured by a camera ray 𝑟𝑜,𝑣 (𝜏) ≡ 𝑜 + 𝜏𝑣, 𝜏 ∈ R≥0 with origin 𝑜
and direction 𝑣 using the (exponential) volume rendering equation:

𝑐 (𝑜, 𝑣) =
∫ 𝜏f

𝜏n
exp

(
−

∫ 𝜏

𝜏n
𝜎
(
𝑟𝑜,𝑣 (𝑡), 𝑣

)
d𝑡

)
· 𝜎

(
𝑟𝑜,𝑣 (𝜏), 𝑣

)
L
(
𝑟𝑜,𝑣 (𝜏),−𝑣

)
d𝑡, (1)

where 𝜏n and 𝜏f are near and far (resp.) integration limits due to the
scene’s bounding box. Rasterization approaches [Kerbl et al. 2023;
Zwicker et al. 2002; Dai et al. 2024] approximate Equation (1) by pro-
jecting (a point-based representation of)𝜎 and L on the image plane,
where integration becomes an efficient splatting operation. By con-
trast, ray tracing approaches approximate 𝑐 (𝑜, 𝑣) with numerical
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quadrature [Max 1995] using ray samples 𝜏n = 𝜏0 < · · · < 𝜏𝐽 = 𝜏f :

𝑐 (𝑜, 𝑣) ≈
𝐽∑
𝑗=1

exp

(
−

𝑗∑
𝑖=1

𝜎𝑖Δ𝑖

) (
1 − exp

(
𝜎 𝑗Δ 𝑗

) )
L𝑗 (2)

where at each sample location 𝜏 𝑗 , Δ 𝑗 ≡ 𝜏 𝑗 −𝜏 𝑗−1, 𝜎 𝑗 ≡ 𝜎
(
𝑟𝑜,𝑣

(
𝜏 𝑗

)
, 𝑣

)
,

and L𝑗 ≡ L
(
𝑟𝑜,𝑣

(
𝜏 𝑗

)
,−𝑣

)
. Both approaches are differentiable, allow-

ing propagation of gradients from rendered colors 𝑐 to the atten-
uation coefficient 𝜎 and radiance field L. Rasterization is typically
faster but also less general than ray tracing, which allows, e.g., us-
ing shadow rays to incorporate direct illumination from known
light sources [Bi et al. 2020a,b; Hasselgren et al. 2022; Verbin et al.
2024].
With this representation at hand, NeRF methods reconstruct a

3D scene from multi-view images by using gradient descent meth-
ods [Kingma and Ba 2015] to optimize 𝜎 and L, so as to minimize
an objective comparing real and rendered images—an inverse ren-
dering methodology [Loper and Black 2014; Marschner 1998].

Surface reconstruction. To improve the performance of thismethod-
ology in surface reconstruction tasks, priorwork [Wang et al. 2021b;
Yariv et al. 2021; Oechsle et al. 2021; Miller et al. 2024] has repre-
sented 𝜎 as an analytic function of a scalar field F : R3 → R—which
we term the geometry field—controlling an implicit surface repre-
sentation of the scene geometry ΓF ⊂ R3, i.e., ΓF ≡

{
𝑥 ∈ R3 : F(𝑥) = 0

}
(with the convention that pointswhere F(𝑥) < 0 are interior points).

We adopt the representation by Miller et al. [2024],2 which first
defines a vacancy function in terms of F:

v(𝑥) ≡ (𝑠 F(𝑥)), (3)

where 𝑠 > 0 is a user-defined scale factor, and : R → [0, 1] is a
sigmoid function [Han and Moraga 1995; Glorot et al. 2011] equal
to the cumulative distribution function of a standard normal dis-
tribution. Thus v equals 1/2 when F = 0 (points on the surface ΓF),
approaches 1 as F increases (exterior points), and 0 as F decreases
(interior points). Miller et al. [2024, Equation (12)] relate 𝜎 to v as :

𝜎 (𝑥, 𝜔) ≡ |𝜔 · ∇v(𝑥) |
v(𝑥) . (4)

Then, reconstruction uses the above inverse rendering methodol-
ogy to optimize (through the differentiable Equations (3) and (4))
the geometry field F instead of the attenuation coefficient 𝜎 .

Structure-from-motion initialization. Inverse rendering requires
knowledge of camera locations 𝑜 and poses 𝑣 for each image in a
multi-view dataset, to render images with Equation (1). Inverse ren-
dering methods typically include an initialization stage that uses
structure from motion [Özyeşil et al. 2017] to estimate this camera
information. The initialization stage additionally outputs a sparse
point cloud reconstruction of the 3D scene, and Deng et al. [2022]
show that the final reconstruction can improve by leveraging this
output during subsequent inverse rendering optimization.
Modern structure-from-motionmethods such as COLMAP [Schön-

berger and Frahm 2016] provide an optional refinement process

2This representation is similar to NeuS [Wang et al. 2021b], except enforces reciprocity
and uses a sigmoid corresponding to a Gaussian process. In our experiments we found
that these changes result in significantly improved performance.

Poissonε(   ,    )
.

appearance attributes
geometry attributes

{   ,   }
min render (                    )

Eqs. (17), (20)

Eq. (21)

Eqs. (18), (3), (4)

Eq. (2)

Figure 2. Overview of our method. During forward rendering (indicated
by solid arrows), at each sample location along a ray, we interpolate geom-
etry and appearance attributes from a point cloud through a fast primal
dipole sum query. We pass appearance attributes through a shallow MLP
to predict colors, and use geometry attributes to compute attenuation co-
efficients. We integrate along the ray to compute the rendered color and
minimize the 𝐿1-loss between the rendered and ground truth colors. Dur-
ing backpropagation (indicated by dashed arrows), we optimize geometry
and appearance attributes of the point cloud through a fast adjoint dipole
sum query.

[Schönberger et al. 2016] that outputs a dense point cloud recon-
struction. Inverse rendering methods skip this refinement process
during initialization, despite the fact that: 1. it produces reconstruc-
tions of quality competitive with or often even better than what in-
verse rendering achieves [Wang et al. 2021b] (we revisit this point
in Section 7); and 2. its runtime is a lot shorter than the runtime of
inverse rendering. Thus, using this refinement process during ini-
tialization and leveraging leveraging its dense point cloud output
for inverse rendering could help greatly improve performance in
terms of both reconstruction quality and computational efficiency.

Our contribution. Within this context, we develop a point-based
representation for the geometry field F and radiance field L that:
1. facilitates fast ray tracing, enabling efficient inverse rendering

(like rasterization) without sacrificing generality (shadow rays);
2. leverages dense point cloud outputs from structure-for-motion

initialization, optimizing only per-point attributes and a shallow
multi-layer perceptron (MLP) during inverse rendering;

3. reconstructs high quality surfaces by implicitly enforcing geo-
metric regularization (e.g., harmonicity).

Figure 2 overviews our overall method.

3.2 Winding number
We derive our point-based representation as a generalization of the
winding number, which we discuss next.

Continuous surfaces. We first consider the winding number for a
continuous surface Γ ⊂ R3. Among its many equivalent definitions
[Feng et al. 2023], we use that as a Laplacian double layer potential
with unit moment, which facilitates the generalizations we consider
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in Section 4. Then, the winding number w : R3 → R equals:

w(𝑥) ≡
∫
Γ
P(𝑥,𝑦)1 d𝐴(𝑦), P(𝑥,𝑦) ≡ 1

4𝜋

𝑛(𝑦) · (𝑦 − 𝑥)
∥𝑦 − 𝑥 ∥3

. (5)

Here,𝑛(𝑦) is the outward normal vector at point𝑦 ∈ Γ, and P : R3×
R3 → R is the free-space Poisson kernel for the Laplace equation.
We make explicit the factor 1 in Equation (5), for reasons we will
explain in Section 4.The scalar fieldw is jump-harmonic and, when
the surface Γ is watertight, equals its binary indicator function (a
fact known as Gauss’ lemma [Folland 1995, Proposition 3.19]):

w(𝑥) =

1, 𝑥 inside Γ,
0, 𝑥 outside Γ,
1/2, 𝑥 on Γ.

(6)

Point clouds. We next consider the winding number for an ori-
ented point cloud P ≡ {(p𝑚, n𝑚,A𝑚)}𝑀𝑚=1, where for each 𝑚 we
assume that: 1. the point p𝑚 is a sample from an underlying sur-
face Γ; 2. the vector n𝑚 is the outward normal of Γ at p𝑚 ; and
3. the scalar A𝑚 is the geodesic Voronoi area on Γ of p𝑚 , i.e., the
area of the subset of Γ where points are closer (in the geodesic dis-
tance sense) to p𝑚 than any other point in P. We use the dense
point cloud from structure-from-motion initialization, which pro-
vides points p𝑚 and normals n𝑚 , and we estimate area weights A𝑚
as in Barill et al. [2018]. Then, Barill et al. [2018] generalize the
winding number to point clouds using a discretization of the dou-
ble layer potential (5).3

Winding numbeR foR an oRiented point cloud

For an oriented point P ≡ {(p𝑚, n𝑚,A𝑚)}𝑀𝑚=1, its winding
number w̃ : R3 → R is the scalar field:

w̃(𝑥) ≡
𝑀∑
𝑚=1

A𝑚 P(𝑥, p𝑚)1 =
𝑀∑
𝑚=1

A𝑚
4𝜋

n𝑚 ·(p𝑚 − 𝑥)
∥p𝑚 − 𝑥 ∥3

1. (7)

Winding number as a geometry field. Though w̃ is not a binary
scalar field (unlike its continuous counterpart w), its behavior is
still suggestive of the continuous surface Γ underlying P: As Bar-
ill et al. [2018] show, it approaches 1/2 at points near the contin-
uous surface Γ underlying P, increases towards its interior, and
decreases towards its exterior. Thus at first glance, it appears we
can use it to represent a geometry field for inverse rendering (Sec-
tion 3.1) as:

Fw (𝑥) ≡
1
2
− w̃(𝑥), (8)

corresponding to an implicit surface Γw ≡
{
𝑥 ∈ R3 : Fw (𝑥) = 0

}
.

This representation provides several critical advantages:
3 Accurate approximation. Γw provides an approximation to Γ that

becomes exact as point density becomes infinite, and degrades
gracefully as the number of points𝑀 decreases.

3 Geometric regularization. Fw is imbuedwith regularity properties
that provide geometric regularization. It is jump-harmonic, and
thus of a smooth nature that has proven useful for geometric op-
timization tasks [Peng et al. 2021; Lipman 2021]. It is also related

3Throughout we use bars and tildes to indicate correspondences between quantities
involving continuous surface integrals and their point-cloud approximations (resp.).

to robust geometric representations [Kazhdan et al. 2006; Belyaev
et al. 2013] and interpolation schemes [Floater et al. 2005; Ju et al.
2005] that have found great success in reconstruction applica-
tions. We elaborate on these relationships in Sections 4.1 and 5.

3 Direct initialization. Fw can be directly computed using the point
cloud from structure-from-motion initialization. Point queries for
w̃, and thus Fw, use only the point cloud attributes, and do not
require meshing or a proxy data structure (e.g., grid or neural).

3 Fast queries. Such point queries, and backpropagating through them,
can be made efficient with logarithmic complexity O(log𝑀) rel-
ative to point cloud size 𝑀 , as we explain in Section 6. Thus, Fw
lends itself to efficient ray tracing (which requires multiple point
queries along each viewing ray (Equation (1))), even when work-
ing with dense point clouds from structure from motion.

Barill et al. [2018] further discuss the benefits of the winding num-
ber w̃ versus other point-based surface representations. At the same
time, w̃, and thus Fw, have critical shortcomings that make them
unsuitable for direct use for inverse rendering:

7 Numerical instability. The Poisson kernel P(𝑥,𝑦) is singular as
𝑥 → 𝑦. The singularity makes the surface Γw numerical algo-
rithms interface with—e.g., during ray tracing [Gillespie et al.
2024, Section 4.3] or isosurface extraction [Barill et al. 2018, Sec-
tion 3 & Figure 9]—inaccurate and numerically unstable near P.
These numerical issues hinder inverse rendering performance
(e.g., due to rays passing near or through points in P, Section 7).

7 Exact interpolation.The singularity makes the implicit surface Γw
an exact interpolant of the point cloud P. Exact interpolation
is undesirable when working with imperfect point clouds with
noisy point locations [Barill et al. 2018, Section 9], such as those
from structure-from-motion initialization.

7 Outlier sensitivity. Such point clouds typically also suffer from
outlier points (e.g., due to incorrect correspondences) and inac-
curate or incorrectly oriented normals. As w̃ weighs all points
equally, it is can be very sensitive to such defects.

We explain how to overcome these shortcomings in the next sec-
tion.

4 REGULARIZED DIPOLE SUMS
We introduce a generalization of w̃ in Equation (7) that facilitates
point-based representations in inverse rendering for both the ge-
ometry field F and, as we explain in Section 5.1, the radiance field
L. Our generalization changes Equation (7) by replacing: 1. singu-
lar with non-singular kernels (Section 4.1); and 2. unit with vari-
able per-point weights (Section 4.2). We also present two techni-
cal results (Propositions 1 and 2) that lend theoretical support to
our generalization, by relating it to Poisson surface reconstruction
[Kazhdan et al. 2006] and stochastic point clouds (resp.).

4.1 Regularization
To overcome shortcomings due to the singular Poisson kernel P,
we turn to regularization schemes common in methods for the sim-
ulation of linear partial differential equations (e.g., method of fun-
damental solutions, boundary element method [Chen et al. 2024,
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Section 2.2]). These methods use regularization to address numeri-
cal issues arising from singular potential kernels analogous to the
issues we encounter in inverse rendering.
A common regularization scheme [Beale et al. 2016; Cortez 2001;

Cortez et al. 2005]4 starts from the definition of the Poisson kernel
through the Laplacian Green’s function G : R3 × R3 → R:

P(𝑥,𝑦) ≡ 𝑛(𝑦) · ∇𝑦 G(𝑥,𝑦), (9)
where G satisfies: Δ𝑥 G(𝑥,𝑦) = 𝛿 (𝑥 − 𝑦), (10)

and 𝛿 is the Dirac delta distribution in R3. Regularization proceeds
by replacing𝛿 with a nascent delta function, that is, a function𝜙𝜀 (𝑥 − 𝑦)
satisfying lim𝜀→0 𝜙𝜀 (𝑥 − 𝑦) = 𝛿 (𝑥 − 𝑦). Then, we can define the
regularized Green’s function G𝜀 and regularized Poisson kernel P𝜀
exactly analogously to Equations (9) and (10):

P𝜀 (𝑥,𝑦) ≡ 𝑛(𝑦) · ∇𝑦 G𝜀 (𝑥,𝑦), (11)
where G𝜀 satisfies: Δ𝑥 G𝜀 (𝑥,𝑦) = 𝜙𝜀 (𝑥 − 𝑦) . (12)

It follows that lim𝜀→0 G𝜀 = G and lim𝜀→0 P𝜀 = P. A common choice
of nascent delta function is the Gaussian function:

𝜙𝜀 (𝑥 − 𝑦) ≡
1

𝜀
√
2𝜋

exp

(
− ∥𝑥 − 𝑦∥

2

2𝜀2

)
. (13)

The corresponding regularized Poisson kernel is [Beale et al. 2016]:

P𝜀 (𝑥,𝑦) ≡ S

(
∥𝑦 − 𝑥 ∥

𝜀

)
P(𝑥,𝑦), (14)

where S(𝑡) ≡ erf (𝑡)−2𝑡/√𝜋 exp
(
−𝑡2

)
. Unlike P, P𝜀 is not singular, as

P𝜀 (𝑦,𝑦) = 3−1𝜀−3𝜋−3/2 is finite for 𝜀 > 0. The parameter 𝜀 controls
the trade-off between regularization (restricting how fast P𝜀 (𝑥,𝑦)
increases as ∥𝑦 − 𝑥 ∥ → 0) and bias (bounding the difference P𝜀 − P).
We can use P𝜀 to generalize Equation (7) as follows.

RegulaRized winding numbeR foR an oRiented point
cloud

For an oriented point P ≡ {(p𝑚, n𝑚,A𝑚)}𝑀𝑚=1, and a regu-
larization parameter 𝜀 ≥ 0, its regularized winding number
w̃𝜀 : R3 → R is the scalar field:

w̃𝜀 (𝑥) ≡
𝑀∑
𝑚=1

A𝑚 P𝜀 (𝑥, p𝑚)1, (15)

where P𝜀 is the regularized Poisson kernel in Equation (14).

Unlike w̃, w̃𝜀 can be robustly evaluated arbitrarily close to points
in P, and its 1/2-level set does not exactly interpolate those points.
Thus, it escapes the first two shortcomings we identified at the end
of Section 3.2. During inverse rendering (Section 5.2), we can use
additional image-based losses to penalize large deviations between
the level set and P, while also allowing for inexact interpolation
to account for noise. Figure 3 uses the dense point cloud output
from dense structure-from-motion initialization for a scene from
the BlendedMVS dataset [Yao et al. 2020] to compare: 1. 2D slices of
4An alternative to regularization is to “desingularize” the Poisson kernel by introduc-
ing a small cutoff in the denominator [Lu et al. 2018; Lin et al. 2022]. We found that this
approach results in worse performance in inverse rendering experiments (Section 7),
corroborating the arguments of Cortez [2001] in favor of regularization.

point cloud

winding number w/ regularization

Figure 3. Using the original and regularized winding number fields on the
unoptimized point cloud (left) for the BlendedMVS clocK scene. The top
row shows planar slices of the two fields: The original winding number is
very noisy near point cloud locations due to the singular Poisson kernel,
whereas the regularized winding number is much smoother. The insets vi-
sualize the singular and regularized kernels. The bottom row shows meshes
extracted from the two fields using marching cubes: The original winding
number results in strong artifacts, which the regularized winding number
fixes.

the original and regularized winding number fields, and 2. meshed
isosurfaces extracted from them using marching cubes [Lorensen
and Cline 1987]. Simply using the regularized winding number on
this initial point cloud, without any training, already produces high-
quality meshes comparable to those from state-of-the-art inverse
rendering methods, as we quantify in Section 7.

Relationship to Poisson surface reconstruction. We remark on a re-
lationship between the regularized winding number w̃𝜀 in Equa-
tion (15), and Poisson surface reconstruction (PSR) [Kazhdan et al.
2006; Kazhdan and Hoppe 2013]; this relationship highlights the
useful geometric regularization properties of w̃𝜀 , and its general-
ization in Equation (17). Like Equation (15), PSR uses an oriented
point cloud to compute a scalar field that approximates the contin-
uous winding number (5) for the underlying surface Γ. This scalar
field has proven to enable robust surface reconstruction, thanks to
the regularity properties of the Poisson equation used to compute it.
As a result, PSR has become a workhorse for point-based surface re-
construction [Berger et al. 2014; Huang et al. 2024a]. Unfortunately,
using PSR in inverse rendering is prohibitively expensive, as query-
ing (and differentiating) its scalar field output requires constructing
a grid and performing a global Poisson solve operation [Peng et al.
2021]. However, we prove in Appendix A.1 the following result.

PRoposition 1: Poisson suRface ReconstRuction

The regularized winding number w̃𝜀 is the solution to the Pois-
son equation of Kazhdan et al. [2006].
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Proposition 1 shows that we can use the regularized winding
number w̃𝜀 in Equation (15) (and its generalization in Equation (17))
as a geometry representation for inverse rendering that has the
same regularity and robustness properties as PSR, while remain-
ing efficient to render and differentiate (Section 6). Feng et al. [2023,
Section 1.1.2] and Barill et al. [2018, Section 2.1] have previously dis-
cussed the relationship between the non-regularized winding num-
ber w̃ in Equation (5) and PSR. However, the two are equivalent
only asymptotically, at the limit of zero-variance Gaussian blur-
ring of normals in PSR [Kazhdan et al. 2006, Equation (2)]. By con-
trast, the equivalence Proposition 1 is exact for all blur variances—
intuitively, the Gaussian blurring of normals in PSR is equivalent
to the Gaussian regularization of the Green’s function and Poisson
kernel in Equations (11) and (12). The need to incorporate Gauss-
ian regularization helps resolve, both theoretically and in practice
(Figure 3) performance discrepancies between the winding number
and PSR in, e.g., isosurface extraction [Barill et al. 2018, Section 3
& Figure 9].

4.2 Variable moment
To overcome shortcomings due to outlier points and inaccurate nor-
mals, we modify Equation (15) to use variable per-point weights—
thus allowing to deemphasize outliers. This modification yields a
point-based representation suitable for both the geometry field and
radiance field (Section 5.1) in inverse rendering.

To this end, we can replace the unit moment in Equation (5) with
a variable moment f : Γ → R. Its corresponding double layer poten-
tial f : R3 → R is the scalar field [Folland 1995, Section 3.C]:

f (𝑥) ≡
∫
Γ
P(𝑥,𝑦) f (𝑦) d𝐴(𝑦) . (16)

For any sufficiently smooth moment f , f is jump-harmonic [Krutit-
skii 2001]: it satisfies Laplace’s equation at 𝑥 ∈ R3 \ Γ, and has a
jump discontinuity equal to f at 𝑥 ∈ Γ, analogously to Equation (6)
for w.
Using the moment values on the point cloud, f𝑚 ≡ f (p𝑚), p𝑚 ∈
P, and the regularized kernel P𝜀 to circumvent singularity issues,
we arrive at a regularized point-cloud approximation of Equation (16).5

RegulaRized dipole sum foR an oRiented point cloud

For an oriented pointP ≡ {(p𝑚, n𝑚,A𝑚)}𝑀𝑚=1, a regularization
parameter 𝜀 ≥ 0, and a moment function with point samples
f𝑚,𝑚 = 1, . . . , 𝑀 , the corresponding regularized dipole sum w̃𝜀 :
R3 → R is the scalar field:

f̃𝜀 (𝑥) ≡
𝑀∑
𝑚=1

A𝑚 P𝜀 (𝑥, p𝑚) f𝑚 . (17)

where P𝜀 is the regularized Poisson kernel in Equation (14).

The point-cloudwinding number and its regularized form in Equa-
tions (7) and (15) are special cases, i.e., w̃ = 1̃0 and w̃𝜀 = 1̃𝜀 . The
regularized dipole summaintains the advantages of the point-cloud
5Following Barill et al. [2018, Section 3.1] and Gotsman andHormann [2024, Section 2],
we use the term dipole because the Poisson kernel P(𝑥, 𝑦) equals the electric potential
of a dipole centered at 𝑦 and polarized in the direction of 𝑛 (𝑦) .

winding number we listed in Section 3.2, while addressing its short-
comings. We can thus treat f𝑚, 𝑚 = 1, . . . , 𝑀 as a learnable per-
point geometry attribute, and use its corresponding dipole sum to
define a point-based representation for the geometry field:

F(𝑥) ≡ 1
2
− f̃𝜀 (𝑥), (18)

We then convert F to a vacancy v and attenuation coefficient 𝜎 us-
ing Equations (3) and (4). We initialize f̃𝜀 to equal the regularized
winding number w̃𝜀 in Equation (15) by using initial geometry at-
tribute values f𝑚 = 1, which we then optimize during inverse ren-
dering to update the scene geometry (Section 5.2). Figure 4 visu-
alizes these initial and optimized fields on the teaser scene. Com-
pared to the winding number, allowing non-unit values for f𝑚 dur-
ing the inverse rendering process serves two goals: 1. It allows the
process to diminish the influence of point cloud outliers, by decreas-
ing their geometry attribute f𝑚 . The point cloud insets in Figure 1
visualize this effect, by scaling point radii by their optimized geom-
etry attribute. 2. It allows the process to modify the scene geometry
(e.g., to correct noisy point locations or holes in textureless regions)
without changing the point locations p𝑚 in P; as we explain in Sec-
tion 6.3, fixing point locations facilitates faster inverse rendering.

Stochastic point cloud interpretation. Our generalization of the
winding number w̃ in Equation (5) into the regularized dipole sum
f̃𝜀 in Equation (17) was motivated by the need for improved robust-
ness when working with imperfect point clouds that include noisy
and outlier points. We can model such a point cloud as stochastic,
treating both point locations and normals as random variables. The
winding number of such a stochastic point cloud is itself a ran-
dom variable. We then prove the following relationship between
this random variable and the regularized dipole sum.

PRoposition 2: Stochastic point cloud

We assume that P is a stochastic point cloud such that, for
each point: 1. its location is a 3D Gaussian random vari-
able P𝑚 ∼ N(p𝑚, 𝜀𝐼 ), where 𝐼 is the 3 × 3 identity matrix;
2. its normal N𝑚 is a spherical random variable with condi-
tional mean direction n𝑚 and mean resultant length f𝑚 , i.e.,
E[N𝑚 | P𝑚] = f𝑚 n𝑚 . We also assume that all other point cloud
attributes are deterministic. Then, the expected value of w̃ in
Equation (7) equals:

E{P𝑚,N𝑚 }𝑀𝑚=1
[w̃(𝑥)] =

𝑀∑
𝑚=1

A𝑚 P𝜀 (𝑥, p𝑚) f𝑚 = f̃𝜀 . (19)

We refer to Mardia and Jupp [2009, Chapter 9] for background
on spherical random variables, and prove Proposition 2 in Appen-
dix A.2. Proposition 2 lends theoretical support to our use of a reg-
ularized dipole sum to represent the geometry of point clouds P
with noisy (𝜀 > 0) and outlier (f𝑚 ≈ 0)6 points. It also suggests the
option to use different values 𝜀𝑚 , or even covariance matrices Σ𝑚 ,
to model varying and anisotropic per-point uncertainty [Fuhrmann
6In this stochastic interpretation, f𝑚 = 0 means that the random normal N𝑚 (condi-
tional on P𝑚 ) is uniformly distributed on the sphere. Then, the direction of the corre-
sponding dipole is completely uncertain, and on expectation the dipole vanishes.
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and Goesele 2014]. Empirically, we did not find doing so beneficial,
and thus use a global 𝜀 value that we select as we explain in Sec-
tion 5.2.

5 INVERSE RENDERING WITH POINT-BASED FIELDS
We derived a point-based representation for the geometry field in
inverse rendering. To complete our inverse rendering pipeline, we
introduce a point-based representation for the radiance field (Sec-
tion 5.1), and explain how to optimize both fields (Section 5.2).

5.1 Radiance field representation
Our derivation of the regularized dipole sum in Section 4 focused
on point-based representation of scene geometry. However, Equa-
tion (17) provides away to interpolate any learnable per-point attributes—
corresponding to point samples of the continuous moment of a
double-layer potential, or equivalently the jump-Dirichlet bound-
ary condition of a Laplace equation—to scalar fields for use in in-
verse rendering. Thus, the regularized dipole sum lends itself as a
point-based representation also for the radiance field.
To this end, we first interpolate a set of per-point appearance at-

tributes ℓ𝑘 using regularized dipole sums ℓ̃𝑘𝜀 (𝑥) as in Equation (17),

ℓ̃
𝑘
𝜀 (𝑥) ≡

𝑀∑
𝑚=1

A𝑚 P𝜀 (𝑥, p𝑚) ℓ𝑘𝑚, 𝑘 = 1, . . . , 𝐾 . (20)

We then represent the radiance field L(𝑥, 𝜔) as the output of a shal-
low multi-layer perceptron (MLP) that takes as input the values
ℓ̃
𝑘
𝜀 (𝑥), position 𝑥 and (encoded) direction 𝜔 , and the implicit sur-
face normal from the geometry field nimp (𝑥) ≡ ∇ F(𝑥 )/∥∇ F(𝑥 ) ∥:7

L(𝑥, 𝜔) ≡ MLP
(
𝑥, 𝜔, nimp (𝑥), ℓ̃

1
𝜀 (𝑥), . . . , ℓ̃

𝐾
𝜀 (𝑥)

)
. (21)

The radiance field L and the geometry field F (Equation (18)) are
intertwined, as the regularized dipole sums for appearance (Equa-
tion (20)) and geometry (Equation (17)) share the same weights—
determined by point cloud locations p𝑚 , area weights A𝑚 , and nor-
mals n𝑚 .

Relationship to mean value interpolation. Our use of regularized
dipole sums in Equation (20) to interpolate per-point appearance
attributes ℓ is closely related to 3D interpolation with mean value
coordinates [Floater et al. 2005; Ju et al. 2005]. Using Equations (5)
and (16), we can write the mean value interpolant (and its point-
cloud approximation) at 𝑥 ∈ R3 of a function ℓ : Γ → R as:

mvℓ (𝑥) ≡ ℓ (𝑥)
w(𝑥) ≈

ℓ̃ (𝑥)
w̃(𝑥) . (22)

Mean value interpolation has found widespread use in computer
graphics and other areas [Hormann and Sukumar 2017; Chen et al.
2024; de Goes and Desbrun 2024], a success in large part thanks
7We experimented with a representation where the interpolated appearance attributes
ℓ̃
𝑘
𝜀 (𝑥 ) are spherical harmonic coefficients that are convertible to radiance L(𝑥,𝜔 )
through a rotation operation, as advocated by Karnewar et al. [2022] and Fridovich-
Keil et al. [2022]. Unfortunately, this approach, though sufficient for rendering high-
quality novel views, resulted in surface artifacts around regions of strong specular
appearance. Dai et al. [2024, Section 5] report similar issues, which they alleviate by
using monocular normal priors. We instead followedWu et al. [2023] and used anMLP
to post-process the interpolated appearance attributes, to elide supervised data-driven
priors.

to the geometric regularization properties of the mean value inter-
polant [Ju et al. 2005, Section 2]. These properties and empirical
success lend support to our choice of (regularized) dipole sums as
a point-based representation for the radiance field. In our represen-
tation, we omit normalization (denominator in Equation (22)), as
we found empirically that the linear precision property it enforces
inhibits the ability of the radiance field to reproduce specular high-
lights.

5.2 Inverse rendering optimization

Our overall scene representation comprises a point cloudP ≡
{(
p𝑚, n𝑚,A𝑚, f𝑚, ℓ1𝑚, . . . , ℓ

𝐾
𝑚

)}𝑀
𝑚=1

with per-point locations, normals, areaweights, geometry attribute,
and appearance attributes; as well as the parameters of the MLP in
Equation (21). We use this representation to compute the geometry
field F (Equations (17) and (18)) and radiance field L (Equations (20)
and (21)). During the inverse rendering stage, we synthesize images
using volume rendering and ray tracing (Equation (2)) combined
with F and L. We then optimize the point cloud P and MLP by min-
imizing the loss:

Lrendering + Lentropy + Lwinding + Lnormal, (23)

where each summand includes an appropriate weight, and:
1. Lrendering is the 𝐿1-loss between input and rendered images;
2. Lentropy is a per-ray entropy loss inspired from Kim et al. [2022]

(we provide details in Appendix B);
3. Lwinding aggregates losses ∥f𝑚 −1∥2 on the point cloud;
4. Lnormal aggregates losses



n𝑚 − n𝑚,init

2 on the point cloud.
The loss Lwinding regularizes the geometry field F by penalizing
large deviations between the regularized dipole sum f̃𝜀 and the
regularized winding number w̃𝜀 . The loss Lnormal penalizes large
changes to point normals compared to their initial values.

We initialize P with locations p𝑚 and normals n𝑚 using the
dense point cloud output of COLMAP [Schönberger and Frahm 2016],
and area weights A𝑚 computed as in Barill et al. [2018]. We ini-
tialize the geometry attributes f𝑚 to 1 (equal to the regularized
winding number), and appearance attributes ℓ𝑘𝑚 using Gaussian
random variates. Inverse rendering optimizes: the normals, geom-
etry attributes, and appearance attributes of P; the global scale 𝑠
and regularization 𝜀 parameters in Equations (3) and (14) (resp.);
and the MLP parameters in Equation (21). Importantly, we do not
optimize the area weights and locations in P, to facilitate fast in-
verse rendering—we elaborate in Section 6. Instead, the geometry
and appearance attributes provide us with enough degrees of free-
dom to represent high-quality geometry and appearance, and cor-
rect defects (noisy points, outliers, holes) in the dense structure-
from-motion point cloud.

6 BARNES-HUT FAST SUMMATION
Rendering with our point-based representations requires evaluat-
ing dipole sums (Equations (17) and (20)) at multiple locations along
each viewing ray, to compute the geometry (Equation (18)) and
radiance (Equation (21)) fields in Equation (1). Inverse rendering
with these representations requires additionally backpropagating
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winding num. vacancy attenuation coeffs.

low high

point cloud

0 1neg pos

dipole sum

viewing directions

Figure 4. We visualize on the teaser scene geometry-related field quantities that we use for inverse rendering. From left to right: the initial geometry field
with unit geometry attributes (equal to the regularized winding number in Equation (15)), the optimized geometry field with learned geometry attributes
(Equation (18)), the optimized vacancy field (Equation (3)), and attenuation coefficients computed (Equation (4)) along two different viewing directions.

through each dipole sum, to compute derivatives of per-point at-
tributes. We term such evaluation and backpropagation operations
primal and adjoint (resp.) dipole sum queries, using terminology
from differentiable rendering [Nimier-David et al. 2020; Vicini et al.
2021; Stam 2020]. Implemented naively (i.e., as summations by iter-
ating over all points), primal and adjoint queries have linear com-
plexity O(𝑀) relative to point cloud size 𝑀 . Consequently, during
inverse rendering, these queries become the main computational
burden when working with even moderately large point clouds;
and become prohibitively expensive when working with the dense
point clouds output by structure-from-motion initialization.
Fortunately, it is possible to dramatically accelerate both types

of queries, enabling inverse rendering at speeds competitive with
rasterization methods [Dai et al. 2024]. In particular, Barill et al.
[2018] showhow to perform primal queries for thewinding number
with logarithmic complexity O(log𝑀), using the classical Barnes-
Hut fast summation method [Barnes and Hut 1986]. We adopt their
approach, which we adapt below to regularized dipole sums. Then,
we show how to use Barnes-Hut fast summation to perform also
adjoint queries with logarithmic complexity. To simplify discussion,
throughout this sectionwe use b as a stand-in for any of themoment
attributes stored in P—namely, the geometry attribute f and the
appearance attributes ℓ𝑘 , 𝑘 = 1, . . . , 𝐾 .

6.1 Acceleration of primal queries
The Barnes-Hut method first creates a tree data structure (e.g., oc-
tree [Meagher 1982]) whose nodes hierarchically subdivide the point
cloud P into clusters, with leaf nodes corresponding to individ-
ual points. Each tree node 𝑡 is assigned a centroidal radius and at-
tributes representative of the set L(𝑡) of all leaf nodes that are suc-
cessors of 𝑡 in the tree hierarchy. We follow Barill et al. [2018] and

assign the node area, location, area, and radius (resp.) attributes:

Â𝑡 ≡
∑

𝑚∈L(𝑡 )
A𝑚, p̂𝑡 ≡

1

Â𝑡

∑
𝑚∈L(𝑡 )

A𝑚 p𝑚, r̂𝑡 ≡ max
𝑚∈L(𝑡 )

∥p𝑚 − p̂𝑡 ∥,

(24)
as well as vector-valued moment attributes:

b̂𝑡 ≡
1

Â𝑡

∑
𝑚∈L(𝑡 )

A𝑚 n𝑚 b𝑚, (25)

which absorb the leaf nodes’ moment and normal attributes.
Then, for a primal query at point 𝑥 , the Barnes-Hut method per-

forms a depth-first tree traversal: at each node 𝑡 , if 𝑥 is sufficiently
far from the node’s centroid (i.e., ∥𝑥 − p̂𝑡 ∥ > 𝛽r𝑡 , where 𝛽 is a user-
defined parameter), the node’s successors are not visited. Instead,
the sum of contributions from all leaf nodes in L(𝑡) to the dipole
sum is approximated using the node’s attributes:∑

𝑚∈L(𝑡 )
A𝑚 P𝜀 (𝑥, p𝑚) b𝑚 ≈ Â𝑡 S

(
∥p̂𝑡 − 𝑥 ∥

𝜀

)
b̂𝑡 · (p̂𝑡 − 𝑥)
∥p̂𝑡 − 𝑥 ∥3

. (26)

This approximation expresses the fact that, due to the squared-distance
falloff of P𝜀 , the far-field influence of a cluster of points can be repre-
sented by a single point at the cluster’s centroid. Algorithm 1 (lines
13–21) summarizes the accelerated primal queries.

6.2 Acceleration of adjoint queries
A naive implementation of adjoint queries by using automatic dif-
ferentiation (e.g., autograd [Paszke et al. 2017]) would result in lin-
ear complexity O(𝑀), even though the differentiated primal query
has logarithmic complexityO(log𝑀).The reason is that, even if the
primal query stopped tree traversal at a node 𝑡 , the node’s attributes
would be functions of those of all successor leaf nodes.Thus, the ad-
joint query would still end up visiting all leaf nodes.
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Algorithm 1 Barnes-Hut accelerated primal and adjoint queries for fast dipole sums.
1: struct TReeNode
2: p̂, Â, r̂, b̂← TReeUpdate ⊲Immutable node attributes initialized using Equations (24) and (25)
3: d̂b← 0 ⊲Mutable node gradient attribute
4: function GetContRibution(𝑥, 𝜀)
5: return Â S( ∥ p̂−𝑥 ∥/𝜀) (p̂−𝑥 )/∥ p̂−𝑥 ∥3 · b̂ ⊲Compute node contribution to dipole sum using Equation (26)
6: end function
7: function IncRementGRadient(d̃b𝜀 , 𝑥, 𝜀)
8: d̂b += Â S( ∥ p̂−𝑥 ∥/𝜀) (p̂−𝑥 )/∥ p̂−𝑥 ∥3 · d̃b𝜀 ⊲Increment node gradient attribute using Equation (53)
9: end function
10: function GetChildRen
11: return listOfChildrenNodes ⊲Return a list of children nodes, or empty list if node is a leaf
12: end function
Input: A query point 𝑥 , the root node of a tree structure node, a control parameter 𝛽 .
Output: Dipole sum b̃𝜀 (𝑥).
13: function PRimalQeRy(𝑥, node, 𝜀, 𝛽)
14: if ∥𝑥 − node.̂p∥ > 𝛽 · node.̂r then return node.GetContRibution(𝑥, 𝜀) ⊲If the query point is far from the cluster, terminate
15: listOfChildrenNodes← node.GetChildRen ⊲Get list of children nodes
16: if IsEmpty(listOfChildrenNodes) then return node.GetContRibution(𝑥, 𝜀) ⊲If the node is a leaf, terminate
17: b̃𝜀 ← 0 ⊲Initialize dipole sum value
18: for child in listOfChildrenNodes do
19: b̃𝜀 += PRimalQeRy(𝑥, child, 𝜀, 𝛽) ⊲Iterate over all children nodes
20: return b̃𝜀
21: end function
Input: A gradient d̃b𝜀 , a query point 𝑥 , the root node of a tree structure node, a control parameter 𝛽 .
22: function AdjointQeRy(d̃b𝜀 , 𝑥, node, 𝜀, 𝛽)
23: if ∥𝑥 − node.̂p∥ > 𝛽 · node.̂r then node.IncRementGRadient(d̃b𝜀 , 𝑥, 𝜀) return ⊲If the query point is far from the cluster, terminate
24: listOfChildrenNodes← node.GetChildRen ⊲Get list of children nodes
25: if IsEmpty(listOfChildrenNodes) then node.IncRementGRadient(d̃b𝜀 , 𝑥, 𝜀) return ⊲If the node is a leaf, terminate
26: for child in listOfChildrenNodes do
27: AdjointQeRy(d̃b𝜀 , 𝑥, child, 𝜀, 𝛽) ⊲Iterate over all children nodes
28: end function

To maintain logarithmic complexity during inverse rendering,
we use at each gradient iteration a two-stage backpropagation scheme:

1. At the start of the iteration, after the tree updates, we detach the
node attributes from the corresponding leaf node attributes. Dur-
ing inverse rendering, each adjoint query backpropagates gradi-
ents to only the nodes visited by the corresponding primal query.
Each node locally accumulates rendering gradients.

2. After inverse rendering concludes, we perform a single full tree
traversal to propagate accumulated gradients from all nodes to
the leaf nodes. The resulting gradients are used to update point
cloud attributes at the end of the iteration.

This two-stage process requires storing at each tree node a set of
additional mutable gradient attributes d̂b𝑡 (one for each of the ge-
ometry and appearance attributes), to accumulate backpropagated
gradients. Overall, if we perform a total of 𝑄 queries during each
gradient iteration, naive backpropagation would result in complex-
ity O(𝑄𝑀). Our two-stage backpropagation has instead complex-
ityO(𝑄 log𝑀 +𝑀 log𝑀):O(𝑄 log𝑀) for the adjoint queries in the

first stage; and O(𝑀 log𝑀) for the full traversal at the second stage
(updating𝑀 leaf nodes, each with O(log𝑀) ancestors).

Algorithm 1 (lines 22–28) summarizes the accelerated adjoint
queries in the first stage, which we implement exactly analogously
to primal queries. The second stage is likewise easy to implement
automatic differentiation. We provide details in Appendix C.

6.3 Acceleration details
We conclude this section by highlighting some salient details re-
garding our Barnes-Hut acceleration scheme.

Tree construction and update. We construct the octree data struc-
ture after structure frommotion, using its dense point cloud output.
The node hierarchy in the tree depends on only the point cloud loca-
tions p𝑚 . Thus, as we choose not to update these locations during
inverse rendering (Section 5.2), we create the tree structure only
once rather than after each gradient operation. Choosing otherwise
would introduce significant computational overhead.

At each iteration, we must twice update the moment attributes
b̂𝑡 of the tree nodes: once at the start of the iteration, to account
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for updated point cloud attributes after a gradient step; and once at
its end, during the second-stage of backpropagation. Both updates
are efficient, introducing an overhead analogous to about a couple
additional ray casting queries during rendering.

Queries for multiple moment attributes. Primal and inverse ren-
dering with Equation (1) requires performing, at every sampled ray
location 𝑥 , dipole sum queries for all moment attributes b stored in
the point cloud—namely, the geometry attribute f and the appear-
ance attributes ℓ𝑘 , 𝑘 = 1, . . . , 𝐾 . As the tree traversal pattern de-
pends on only 𝑥 , we can return all these attributes with a single
primal query and tree traversal—and likewise for adjoint queries.
Further accelerating performance by using packet queries [Wald
et al. 2014] for multiple query points 𝑥 is an exciting future direc-
tion.

7 EXPERIMENTAL EVALUATION
We evaluate our method against state-of-the-art methods for multi-
view surface reconstruction: Gaussian surfels [Dai et al. 2024], which
combines a point-based representationwith rasterization; andNeus2
[Wang et al. 2023] and Neuralangelo [Li et al. 2023], which both
combine a hybrid hashgrid-neural representation with ray tracing.
All three methods aim for high-quality surface outputs, but place
different emphasis on computational efficiency (Gaussian surfels,
NeuS2) versus reconstruction fidelity (Neuralangelo). In summary,
our results suggest that our method provides, at equal runtimes,
improved reconstruction quality and robustness compared to these
alternatives. Additionally, though we do not include direct compar-
isons, our results (Table 1) additionally suggest that our method
improves reconstruction quality compared to other concurrent 3D
Gaussian methods, including 2D Gaussian splatting [Huang et al.
2024b, Table 1] and Gaussian opacity fields [Yu et al. 2024, Table 2].
We provide additional results and code on the project website.

7.1 Implementation details
We built our codebase in PyTorch [Paszke et al. 2019] based on the
NeuS codebase [Wang et al. 2021a]. We implemented custom C++
and CUDA extensions for building the octree and performing fast
primal and adjoint dipole sum queries, following the original C++
implementation of fast winding numbers [Barill et al. 2018] in libigl
[Jacobson et al. 2018]. Our code is available on the project website.

Radiance field details. We design the MLP in Equation (21) sim-
ilarly to the appearance network of NeuS [Wang et al. 2021b]—4
hidden layers, each with 256 neurons and ReLU activations. We en-
code viewing directions with real spherical harmonics up to degree
3, and use 𝐾 = 32 appearance attributes ℓ𝑘 , for which we found it
beneficial to skip the foreshortening term when computing dipole
sums (Equation (20)). We apply weight normalization [Salimans
and Kingma 2016] for stable training. We limit the radiance field
inside a bounding sphere, and use a background network based on
NeRF++ [Zhang et al. 2020] to model the exterior of the sphere.

Ray sampling. We sample ray locations in Equation (2) as inMiller
et al. [2024]: For each camera ray, we identify the first zero-crossing
of the geometry field F by densely placing 1024 samples along the
ray between the near and far limits. If a zero-crossing is found,

implicit surfacemeshoptimized point cloud

Figure 5. Our regularized dipole sum representation allows us to directly
ray trace the optimized point cloud (where we use color to visualize nor-
mals, and size to visualize geometry attributes), achieving the same results
as ray tracing a mesh without the need to extract one.

we place 24 sparse samples between the near limit and the first
crossing, 48 dense samples around the first crossing, and 8 sparse
samples between the first crossing and the far limit. Otherwise, we
place 80 samples uniformly between the near and far limits.

An advantage of representing the geometry field as a dipole sum
is that we can compute the first zero-crossing along a ray efficiently
(with logarithmic complexity in terms of number of dipole sum
queries) using Harnack tracing [Gillespie et al. 2024, Section 4.3]—a
method analogous to sphere tracing for signed distance functions
[Hart 1996], except designed for (near-)harmonic functions. In prac-
tice, because our fast primal queries contribute only minor over-
head to the overall inverse rendering runtime, we found that Har-
nack tracing provided negligible acceleration compared to the ray
marching procedure we described above; thus we use the latter for
simplicity.

Training. We use Adam [Kingma and Ba 2015] with a batch size
4096 rays for optimization. We use a learning rate of 1 × 10−2 for
point cloud attributes, and 3 × 10−3 for the radiance field MLP. We
use a linear warmup schedule for the first 200 iterations, and a co-
sine decay schedule for the remaining iterations. We use different
numbers of iterations depending on the experiment—training for
1000, 3000, and 20000 iterations takes 3 min, 8 min, and 1 hour
(resp.) on a single NVIDIA RTX 4090 GPU.

Point growing. As we mentioned in Section 4.2, the use of non-
unit geometry attributes for the geometry field F helps fill point
cloud holes due to textureless regions. In practice, we found it use-
ful to also grow a small number of additional points during inverse
rendering. We perform point growing every 500 iterations, by sam-
pling random rays and computing their first intersection with the
geometry field. At each intersection, we add a point if the distance
to the closest point in the point cloud is greater than a threshold. For
each new point, we initialize its attributes by averaging those of its
neighbors, compute a normal using PCA [Hoppe et al. 1992], then
recompute the area weights of the entire point cloud. We found
that we need to grow only about 10% additional points relative to
the original dense point cloud from structure from motion, as we
show in Figure 10.
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reference Gaussian surfels NeuS2 ours reference Gaussian surfels NeuS2 ours

Figure 6. Qualitative comparisons on the BlendedMVS (left) and DTU (right) datasets. The dashed circles indicate areas of interest. NeuS2 captures fine
details, but produces noisy meshes with structural artifacts. Gaussian surfels produces floater artifacts that require manual filtering. By contrast, our method
produces clean meshes with correct and artifact-free geometry. We provide interactive visualizations of results on the entire datasets on the project website.

Mesh extraction. We produce meshes by extracting the zero-level
set of F using marching cubes [Lorensen and Cline 1987], at a grid
resolution of 5123 for DTU and 10243 for BlendedMVS. We make
two observations: 1. Barill et al. [2018] suggest using bisection root-find-
ing to extract meshes from the winding number field, to avoid arti-
facts due to the singular Poisson kernel. By contrast, thanks to the
regularized Poisson kernel, we can extract artifact-free meshes us-
ing marching cubes, as we show in Figure 3. 2. We need to extract
meshes only for quantitative comparisons with other methods. We
can directly and efficiently ray trace our geometry field using ray
marching with fast primal queries (and optionally Harnack tracing
[Gillespie et al. 2024]), as we show in Figure 5.

7.2 Comparison to prior work
We evaluate our method against NeuS2 [Wang et al. 2023], Gauss-
ian surfels [Dai et al. 2024], and Neuralangelo [Li et al. 2023], on the
DTU [Aanæs et al. 2016] and BlendedMVS [Yao et al. 2020] datasets.
We train ourmethod, NeuS2, and Gaussian surfels without mask su-
pervision and evaluate their extracted meshes using the DTU eval-
uation script. For each method, we present results for runtimes of
5 minutes, 10 minutes, and 1 hour, which we measure as follows to
ensure fair comparisons: For NeuS2 and Gaussian surfels, runtime
equals training time; for our method, runtime includes the time of
the refinement process in COLMAP (which the other two methods

do not require), thus decreasing training time (e.g., about 2 minutes
COLMAP refinement and 3minutes training for a total runtime of 5
minutes). For Neuralangelo, we report DTU evaluation scores from
their paper, and do not report scores on BlendedMVS as onmultiple
scenes it failed to produce meaningful reconstructions (e.g., second
row of Figure 7). Lastly, we also compare against meshes extracted
using our regularized winding number (Equation (15)) on the dense
point cloud output by COLMAP without training—effectively, the
initialization of our method. We provide quantitative results in Ta-
bles 1 and 2, qualitative results in Figures 6–8, and interactive visu-
alizations on the project website.

Quantitatively, we observe that our method overall outperforms
Gaussian surfels and NeuS2 at all runtimes on both DTU and Blend-
edMVS. Moreover, our method consistently improves reconstruc-
tion quality with additional training time. By contrast, NeuS2 and
Gaussian surfels either stagnate or even degrade performance with
additional training time. Our method at 1 hour of runtime also out-
performs Neuralangelo at 18 hours of training on the DTU dataset.

In all cases, the quantitative improvements also translate to vi-
sual qualitative improvements on the extracted meshes. Figures 6
and 7 show some examples, but we encourage using the interac-
tive visualization on the project website to better assess qualitative
differences. Our method occasionally takes longer to recover finer
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reference Neuralangelo (18 h) ours (1 h)

Figure 7. Our method produces higher-quality reconstructions than Neu-
ralangelo on DTU scenes at 1/18 of the runtime (top row). Neuralangelo fails
on BlendedMVS scenes when few views are available (bottom row).

Table 1. Chamfer distances on DTU for different runtimes. (N.2: Neus2,
G.S.: Gaussian surfels, N.A.: Neuralangelo, init.: regularized winding num-
ber on the dense COLMAP point cloud without training.)

init. 5m 10m 18 h 1 h
ours N.2 G.S. ours N.2 G.S. ours N.A. ours

24 1.82 0.78 0.68 0.80 0.75 0.62 0.64 0.37 0.45
37 1.34 0.64 0.77 0.77 0.65 0.76 0.69 0.72 0.67
40 0.54 1.04 0.56 0.38 1.06 0.49 0.35 0.35 0.32
55 0.60 0.30 0.47 0.39 0.28 0.48 0.36 0.35 0.31
63 0.76 1.01 0.86 0.91 1.00 0.84 0.90 0.87 0.93
65 1.37 0.62 1.06 0.94 0.59 1.08 0.79 0.54 0.67
69 1.45 0.68 0.86 0.78 0.67 0.88 0.76 0.53 0.53
83 0.95 1.17 1.09 0.69 1.18 1.09 0.72 1.29 0.79
97 1.78 1.00 1.31 1.00 1.04 1.31 0.97 0.97 0.91
105 0.88 0.71 0.74 0.61 0.74 0.75 0.59 0.73 0.63
106 0.80 0.55 0.83 0.73 0.54 1.05 0.60 0.47 0.48
110 1.43 0.89 1.76 0.93 0.84 1.76 0.83 0.74 0.57
114 0.60 0.36 0.52 0.47 0.37 0.52 0.39 0.32 0.32
118 0.94 0.47 0.64 0.55 0.43 0.67 0.49 0.41 0.40
122 0.71 0.45 0.59 0.49 0.43 0.61 0.42 0.43 0.39
avg. 1.06 0.71 0.85 0.70 0.70 0.86 0.63 0.61 0.56

details, because it keeps point cloud positions fixed to regularize ge-
ometry and prevent introduction of geometric defects. Even with
this regularization, as training time increases, our method only im-
proves reconstructed geometry; and with sufficient training time,
it reliably recovers finer geometric details. Figure 8 shows some
examples visualizing the training progression of our method.
By contrast, the alternative methods occasionally recover finer

details earlier in training, but are prone to introducing geometric
defects that cannot be resolved with additional training time (e.g.,
NeuS2 and Gaussian surfels reconstructions of the dog head and
camera screen, in second and third row (resp.) of Figure 6). These
defects can even result in complete failure to extract a meaning-
ful mesh (e.g., Neuralangelo in second row of Figure 7). Addition-
ally, the alternative methods often add higher frequency details not

Table 2. Chamfer distances on BlendedMVS for different runtimes. (N.2:
Neus2, G.S.: Gaussian surfels, init.: regularized winding number on the
dense COLMAP point cloud without training; 7 indicates failure to con-
verge.)

init. 5m 10m 1 h
ours N.2 G.S. ours N.2 G.S. ours N.2 G.S. ours

bas. 0.52 0.76 0.55 0.62 0.72 0.54 0.61 0.75 0.47 0.45
bea. 0.51 0.88 0.62 0.44 0.89 0.65 0.42 0.94 0.71 0.39
bre. 1.06 0.72 0.44 0.45 0.77 0.48 0.27 0.58 0.68 0.22
cam. 0.60 0.86 0.92 0.53 0.84 0.83 0.56 0.82 0.89 0.57
clo. 0.82 1.40 1.71 0.68 1.33 1.14 0.66 1.41 1.44 0.65
cow 0.52 0.66 1.95 0.56 0.64 2.01 0.54 0.64 2.69 0.56
dog 0.98 1.22 1.53 0.77 1.23 1.54 0.69 1.21 1.71 0.61
dol. 0.84 0.74 0.85 0.70 0.71 0.87 0.70 0.70 0.84 0.75
dra. 1.86 0.96 2.46 0.83 0.91 1.75 0.66 0.97 1.58 0.50
dur. 1.22 7 1.43 1.04 7 1.38 1.00 7 1.47 0.98
fou. 1.22 1.23 1.54 0.97 1.30 1.68 0.96 1.22 1.71 0.88
gun. 0.61 0.34 0.84 0.37 0.35 0.45 0.36 0.41 0.55 0.32
hou. 0.71 0.96 0.82 0.72 1.01 0.83 0.70 1.07 0.89 0.51
jad. 2.15 1.64 1.59 1.83 1.54 2.10 1.80 1.63 1.67 1.66
man 1.10 0.55 0.97 1.09 0.54 1.08 0.82 0.55 1.55 0.55
mon. 0.67 0.39 0.73 0.42 0.35 0.87 0.41 0.35 1.43 0.36
scu. 0.67 0.62 1.23 0.66 0.59 1.86 0.62 0.58 2.01 0.56
sto. 0.79 0.92 0.64 0.64 0.78 0.68 0.63 0.79 0.70 0.53
avg. 0.94 0.87 1.16 0.74 0.85 1.15 0.69 0.86 1.28 0.61

present in the input images (e.g., NeuS2 reconstruction of the bear
first row of Figure 6) giving the false impression of increased detail.

Lastly, our method reconstructs more accurate meshes than its
initialization. Notably, this initialization already provides a high
quality 3D reconstruction, and in several cases better than what
NeuS2 and Gaussian surfels after an hour of training (Table 2)! This
behavior highlights the importance of leveraging dense point cloud
initialization from structure frommotion in subsequent inverse ren-
dering. To summarize, our method overall ensures robust perfor-
mance by providing reliable geometry improvement and fine fea-
ture recovery, and outperforms alternativemethods at equal (NeuS2,
Gaussian surfels) or order-of-magnitude shorter (Neuralangelo) run-
times.

7.3 Ablation study
To evaluate the impact of different components of our method in
overall performance, we perform an ablation study using the Blend-
edMVS dataset and the same experimental protocol as in Section 7.2.
We evaluate the following variants of ourmethod: 1. removing each
of the entropy, winding, and normal losses in Equation (23) during
inverse rendering optimization; 2. removing kernel regularization;
3. removing point growing; and 4. removing normal training and
keeping normals fixed to their initial values. We provide quantita-
tive results in Table 3. We observe that performance deteriorates
in all cases, suggesting that each of the components we consider in
this ablation study contributes positively to overall performance.
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initial reg. wn. 5 min 10 min 1 hour

Figure 8. Progression of our method on DTU (top two rows) and Blend-
edMVS (bottom two rows) scenes. The leftmost column shows the mesh
extracted from the initial regularized winding number field, and the re-
maining columns showmeshes at runtimes of 5 minutes, 10 minutes, and 1
hour. Our method significantly improves the initial mesh within 5 minutes
(3 minutes training), and continues to refine details with additional train-
ing.

Table 3. Chamfer distances on BlendedMVS for ablation study. Labels in-
dicate components we remove from the full method we evaluate in Table 2.

7 entropy
loss

winding
loss

normal
loss

kernel
reg.

point
grow.

normal
train.

avg. 0.66 0.65 0.69 0.73 0.64 0.68

The component that has the largest impact in performance is re-
moving kernel regularization. We were not able to completely re-
move regularization (i.e., use 𝜀 = 0 in Equation (14)), as doing so
resulted in training failures in all scenes because of numerical er-
rors (undefined values). Instead, we resorted to using a small cutoff
in the denominator of the Poisson kernel in Equation (9)—an ap-
proach termed “desingularization” by Cortez [2001]. In addition to
significantly worsening quantitative scores in Table 3, using desin-
gularization results in extracted meshes with strong artifacts, simi-
lar to those we show in Figure 3 for the unoptimized mesh.

7.4 Rendering with shadow rays
Compared to other fast point-based methods such as Gaussian sur-
fels [Dai et al. 2024], our method uses ray tracing instead of raster-
ization. Ray tracing provides greater flexibility than rasterization
in terms of rendering algorithms and light transport effects it can
be used for. A salient example in the context of 3D reconstruction
is rendering direct illumination via shadow rays [Ling et al. 2023]
when reconstructing scenes with known illumination—doing so is
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reference w/o shadow rays w/ shadow rays

Figure 9. Comparison of extractedmeshes and rendered images from train-
ing with and without shadow rays on the NeRF Realistic Synthetic Lego
scene. Optimizing with shadow rays results in extracted meshes that have
fewer artifacts and finer details. Additionally, it results in images rendered
under novel lighting that have more accurate shadows.

not possible with rasterization methods. We use a synthetic exam-
ple to demonstrate that this additional flexibility translates to im-
provements in both mesh reconstruction and novel view synthesis.

Experiment setup. We re-render the Lego scene from the NeRF
Realistic Synthetic dataset [Mildenhall et al. 2021] with Lambertian
materials and illumination from two point light sources. We render
200 images from random viewpoints and point-light positions that
vary from image to image. We process these images with COLMAP
to extract an initial dense point cloud, normals, and camera poses—
we use ground truth point light positions for each view.

Inverse rendering. Weoptimize this initialization using ourmethod
with and without shadow rays. Without shadow rays, our method
works exactly as before, using the radiance field representation of
Equation (21) to model global (direct and indirect) illumination.

With shadow rays, we augment Equation (21) to include direct
illumination terms for the two point light sources:

Lsh.rays (𝑥, 𝜔) ≡
∑

𝑖=1,2
L𝑖d (𝑥, 𝜔)

+MLP
(
𝑥, 𝜔, nimp (𝑥), ℓ̃

1
𝜀 (𝑥), . . . , ℓ̃

𝐾
𝜀 (𝑥)

)
, (27)

where for each light source:

L𝑖d (𝑥, 𝜔) ≡ 𝛼 (𝑥) T(𝑥, 𝑙𝑖 )
nimp (𝑥) · (𝑙𝑖 − 𝑥)
∥𝑙𝑖 − 𝑥 ∥3

. (28)
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Here, 𝑙𝑖 is the position of the 𝑖-th light source, 𝛼 is the albedo at 𝑥 ,
and T(𝑥, 𝑙𝑖 ) is the exponential transmittance between 𝑥 and 𝑙𝑖 . We
compute albedo as an additional output of the MLP, and transmit-
tance using quadrature (Equation (2)) and fast queries.

Results. We compare in Figure 9 extracted meshes and images
rendered under novel lighting, after optimizing with and without
shadow rays. We observe that optimizing with shadow rays results
in extracted meshes with fewer artifacts and finer details. Addition-
ally, the corresponding images have accurate shadows, compared
to clearly implausible shadows otherwise.These results demonstrate
that our method benefits from the generality of ray tracing, while
achieving efficiency comparable to rasterization.

8 LIMITATIONS AND DISCUSSION
We introduced the regularized dipole sum, a point-based represen-
tation for inverse rendering of 3D geometry. This representations
allows modeling, ray tracing, and optimizing both implicit geome-
try and radiance fields using point cloud attributes. Coupled with
Barnes-Hut acceleration, dipole sums enable multi-view 3D recon-
struction at speeds comparable to and reconstruction quality bet-
ter than rasterization methods, while maintaining the generality
afforded by ray tracing. Starting from dense structure-from-motion
initialization, dipole sums additionally produce surface reconstruc-
tions of better quality than neural representations, while escaping
overfitting issues or computational overheads those encounter. We
conclude with a discussion of some limitations of our work, and the
future research directions they suggest.

Dealing with specular appearance. Both our work and prior work
studying representations other than neural (e.g., Gaussian surfels
[Dai et al. 2024] for point-based, and Voxurf [Wu et al. 2023] for
grid-based) report difficulties producing accurate surface reconstruc-
tions in areas of strong specular appearance. Our method and Vox-
urf alleviate the issue using shallow MLPs to predict appearance
from interpolated features, which inevitably introduces a compu-
tational overhead. Gaussian surfels instead rely on data-driven pri-
ors, which in turn introduces reliance on supervised training and
generalizability issues. Previous work on neural representations
showed improved handling of specular appearance through the use
of “roughness” [Verbin et al. 2022] or “anisotropy” [Miller et al.
2024] features that are combined with spherical-harmonic radiance
representations during ray tracing. As our method also uses ray
tracing, it could adapt this approach by incorporating such features
as point attributes rather than neural network outputs.

Dealing with large textureless regions. Our method directly uses
the dense point cloud from structure-from-motion initialization, which
makes it sensitive to artifacts such as large holes and missing sur-
faces in that point cloud (e.g., due to textureless regions where
structure from motion fails). Our method mitigates these artifacts
through the use of learnable per-point geometry attributes (Sec-
tion 4.2) and point growing (Section 7.1), but the resulting recon-
struction of very large textureless regions can still be noisy—Figure 10
shows an example. Adopting more elaborate point growing proce-
dures from prior work [Xu et al. 2022; Kerbl et al. 2023] could enable
our technique to more effective mitigate such artifacts.

final meshinitial meshpoint cloud

added
original

Figure 10. Visualization of original and added points on the point cloud for
the DTU sKull scene (left), and extractedmeshes from the original (middle)
and final (right) point clouds. Our point-growing method fills in regions
with large gaps in the point cloud (e.g., top of the skull) and, together with
optimized geometry attributes, fixes these gaps in the final extracted mesh.

Global illumination and surface rendering. Our dipole sum repre-
sentation is designed for efficient ray tracing.Thus, it is compatible,
in principle, with more general (primal and differentiable) render-
ing algorithms. We have demonstrated this compatibility only in
a restricted fashion, through a combination of dipole sums with
shadow rays for direct illumination estimation (Section 7). Addi-
tionally, we focused on volume rendering, but our dipole sum rep-
resentation is also compatible with surface rendering formulations,
which lead to improved surface reconstruction [Cai et al. 2022; Luan
et al. 2021] at the cost of needing to account for visibility disconti-
nuities in the represented implicit surface [Vicini et al. 2022; Ban-
garu et al. 2022]. In the future, it would be interesting to investigate
combinations of dipole sumswith other direct illumination [Bitterli
et al. 2020] and global illumination [Pharr et al. 2023] algorithms,
in both volume and surface rendering formulations.

Applications beyond 3D reconstruction. We evaluated our point-
based representation only in the narrow context of inverse render-
ing for 3D reconstruction. However, representations such as our
dipole sum—comprising a tailored combination of point cloud at-
tributes, an interpolation kernel, and fast summation queries—can
be useful more broadly for a variety of graphics and vision tasks,
analogously tomultiresolution hashgrids [Müller et al. 2022]. Broader
adoption could be facilitated by investigation of alternative fast
summation methods [Beatson et al. 1997], and data-driven opti-
mization of interpolation kernels [Chen et al. 2023; Ryan et al. 2022].
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A PROOFS
We prove the two propositions we presented in Section 4.

A.1 Proof of Proposition 1
Poisson surface reconstruction computes a scalar field as the solu-
tion to the following Poisson equation [Kazhdan et al. 2006, Section
3]:8

Δ u(𝑥) = −∇ · N(𝑥), 𝑥 ∈ R3, (29)
where the normal field N : R3 → R3 in the right-hand side equals:

N(𝑥) ≡
𝑀∑
𝑚=1

𝜙𝜀 (𝑥 − p𝑚) A𝑚 n𝑚, (30)

and 𝜙𝜀 is the Gaussian function in Equation (13). As the domain
of Equation (29) is R3, which is unbounded: 1. existence of a solu-
tion requires that the right-hand side term decays sufficiently fast,
which is true for ∇ · N thanks to the Gaussians in Equation (30);
2. uniqueness of that solution requires imposing a condition at in-
finity, and as u should approximate the indicator in Equation (6),
the appropriate condition is that |u| → 0 as ∥𝑥 ∥ → ∞. Under these
8The minus sign at the right-hand side is because we use outward normals, whereas
Kazhdan et al. [2006] use inward ones.
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conditions, the solution of Equation (29) equals the Newtonian po-
tential with moment ∇ · N [Evans 2022, Section 2.2.1.b, Theorem
1]:

u(𝑥) = −
∫
R3

G(𝑥,𝑦)∇𝑦 · N(𝑦) d𝑦. (31)

From Equation (30), this solution becomes:

u(𝑥) = −
𝑀∑
𝑚=1

A𝑚

≡g𝑚 (𝑥 )︷                                        ︸︸                                        ︷∫
R3

G(𝑥,𝑦)∇𝑦 · 𝜙𝜀 (𝑦 − p𝑚) n𝑚 d𝑦 . (32)

We consider each of the𝑀 integrals separately. Denoting byB(𝑥, 𝑅) ⊂
R3 the ball with center 𝑥 and radius 𝑅, we have:

g𝑚 (𝑥) = lim
𝑅→∞

∫
B(𝑥,𝑅)

G(𝑥,𝑦)∇𝑦 · 𝜙𝜀 (𝑦 − p𝑚) n𝑚 d𝑦 (33)

= lim
𝑅→∞

{ ∫
𝜕 B(𝑥,𝑅)

G(𝑥,𝑦)𝜙𝜀 (𝑦 − p𝑚) n𝑚 ·𝑦−𝑥/𝑅 d𝐴(𝑦)

−
∫
B(𝑥,𝑅)

∇𝑦 G(𝑥,𝑦) · n𝑚 𝜙𝜀 (𝑦 − p𝑚) d𝑦
}

(34)

= 0 +
∫
R3
∇𝑥 G(𝑥,𝑦) · n𝑚 𝜙𝜀 (𝑦 − p𝑚) d𝑦 (35)

= ∇𝑥 G𝜀 (𝑥 − p𝑚) · n𝑚 (36)
= − P𝜀 (𝑥, p𝑚) . (37)

In this sequence: (33) reexpresses the unbounded integration do-
main; (34) uses integration by parts; (35) uses the distributive prop-
erty of limits and the facts that G(𝑥,𝑦)𝜙𝜀 (𝑦 − p𝑚) = 𝑜 (∥𝑦 − 𝑥 ∥−2)
and ∇𝑦 G(𝑥,𝑦) = −∇𝑥 G(𝑥,𝑦); (36) follows from the definition in
(12) and the properties of the Green’s function; and (37) follows
from the definition in (11). Then, from Equations (15), (32) and (37),

u(𝑥) =
𝑀∑
𝑚=1

A𝑚 P𝜀 (𝑥, p𝑚) = w̃𝜀 (𝑥) . (38)

This concludes our proof. We note two differences with the numer-
ical implementation of PSR by Kazhdan et al. [2006]:

1. To make the Poisson equation (29) amenable to a linear-system
solver, Kazhdan et al. [2006] impose Dirichlet boundary condi-
tions on a bounding volume of the point cloud. For the true in-
dicator function in Equation (6), these conditions and our condi-
tion that u → 0 at infinity are equivalent. However, for point-
cloud approximations, they are not equivalent and the choice
between them is arbitrary [Kazhdan and Hoppe 2013, Section
4.4].

2. Kazhdan et al. [2006] suggest variable per-point standard devia-
tions 𝜀𝑚 . Proposition 1 still holds in that case, except using 𝜀𝑚
in Equation (15). We comment on this suggestion in Section 4.2.

A.2 Proof of Proposition 2
Under the assumptions of Proposition 2, we have from Equation (7):

E{P𝑚,N𝑚 }𝑀𝑚=1
[w̃(𝑥)]=

𝑀∑
𝑚=1

A𝑚 EP𝑚,N𝑚 [P(𝑥, P𝑚)] (39)

=
𝑀∑
𝑚=1

A𝑚 ·EP𝑚
[
EN𝑚 [P(𝑥, P𝑚) | P𝑚]

]
(40)

=
𝑀∑
𝑚=1

A𝑚 EP𝑚
[
EN𝑚 [N𝑚∇G(𝑥, P𝑚) | P𝑚]

]
(41)

=
𝑀∑
𝑚=1

A𝑚 EP𝑚 [f𝑚 n𝑚 ∇G(𝑥, P𝑚)] (42)

=
𝑀∑
𝑚=1

A𝑚 n𝑚 ∇EP𝑚 [G(𝑥, P𝑚)] f𝑚 (43)

=
𝑀∑
𝑚=1

A𝑚 n𝑚 ∇G𝜀 (𝑥, p𝑚) f𝑚 (44)

=
𝑀∑
𝑚=1

A𝑚 P𝜀 (𝑥, p𝑚) f𝑚 (45)

= f̃𝜀 . (46)

In this sequence: (39) follows from linearity of expectation; (40) fol-
lows from the law of total expectation; (41) follows from the defini-
tion in (9); (42) follows from the assumptions on N𝑚 ; (43) follows
from the fact that differentiation and expectation commute; (45)
follows from the definition in (11); and (46) follows from the defi-
nition in Equation (17). The only non-trivial step is (44). From the
assumption that P𝑚 is a Gaussian random variable, we have (up to
a constant scale that we omit for simplicity):

EP𝑚 [G(𝑥, P𝑚)] ∝
∫
𝑦∈R3

G(𝑥,𝑦) exp
(
− ∥𝑥 − 𝑦∥

2

2𝜀2

)
d𝑦 (47)

∝
∫
𝑦∈R3

G(𝑥,𝑦)𝜙𝜀 (𝑥 − 𝑦) d𝑦 (48)

= G𝜀 (𝑥,𝑦), (49)

where (48) follows from the definition in (13). The step (49) follows
from the fact that (46) is equivalent, by the properties of the Green’s
function, to the solution of the partial differential equation in (12).

B ENTROPY LOSS
The free-flight distribution [Miller et al. 2024] of a ray 𝑟𝑜,𝑣 (𝜏),

𝑝ff𝑜,𝑣 (𝜏) ≡ exp

(
−

∫ 𝜏

0
𝜎
(
𝑟𝑜,𝑣 (𝑡), 𝑣

)
d𝑡

)
𝜎
(
𝑟𝑜,𝑣 (𝜏), 𝑣

)
, (50)

is the probability density function for a first intersection occurring
at 𝜏 . For surface-like volumes, the free-flight distribution should
approximate a Dirac delta. We can encourage such behavior by pe-
nalizing the Shannon entropy of the free-flight distribution along
each ray—low entropy favors peaked unimodal distributions. To do
so, we use quadrature (Equation (2)) to form a discrete approxima-
tion of the free-flight distribution at the ray samples 𝜏n = 𝜏0 <
· · · < 𝜏𝐽 = 𝜏f :
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𝑝 𝑗 ≡ exp

(
−

𝑗∑
𝑖=1

𝜎𝑖Δ𝑖

) (
1 − exp

(
𝜎 𝑗Δ 𝑗

) )
. (51)

We then compute the Shannon entropy of the vector
[
𝑝1, . . . , 𝑝 𝐽

]
,

𝐻 (𝑜, 𝑣) ≡ −
𝐽∑
𝑗=1

𝑝 𝑗 log𝑝 𝑗 . (52)

We accumulate such entropies for all rays in the loss Lentropy.

C BACKPROPAGATION DETAILS
As in Section 6, throughout this section we use b as a stand-in for
any of the moment attributes stored in P—namely, the geometry
attribute f and the appearance attributes ℓ𝑘 , 𝑘 = 1, . . . , 𝐾 . As we
discuss in Section 6.3, in practice we implement the backpropaga-
tion operations in Equations (25) and (53) for all these attributes as
vector operations updating all attributes in parallel.

Backpropagation to nodes. An adjoint query backpropagates a de-
rivative d̃b𝜀 (𝑥)—provided by differentiable rendering—to all tree

nodes that contributed to this dipole sum during the correspond-
ing primal query. At each such node 𝑡 , the query increments the
(vector-valued) gradient attribute d̂b𝑡 by an amount that follows
from differentiating Equation (26):

Â𝑡 S

(
∥p̂𝑡 − 𝑥 ∥

𝜀

)
p̂𝑡 − 𝑥
∥p̂𝑡 − 𝑥 ∥3

· d̃b𝜀 (𝑥) . (53)

Second-stage backpropagation to leaf nodes. This stage backprop-
agates accumulated gradient attributes d̂b𝑡 from all nodes to leaf
nodes corresponding to individual points p𝑚,𝑚 = 1, . . . , 𝑀 in P.
For each such leaf node, we denote by A(𝑚) the set of its ances-
tor nodes in the tree. Then, by differentiating Equation (25), we can
express this backpropagation stage as simply:

db𝑚 =
∑

𝑡 ∈A(𝑚)

A𝑚

Â𝑡
n𝑚 d̂b𝑡 . (54)

Each leaf node has O(log𝑀) ancestors, thus total complexity of
the second stage is O(𝑀 log𝑀). In practice we implement Equa-
tion (54) as a matrix-vector multiplication that has negligible cost.
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